Amplification Matrix Activity Cosmology Crash Course

Carolyn Sealfon
West Chester University of Pennsylvania

July 22, 2009

The magnification matrix \mathcal{M} gives the linear transformation from the source plane to the image plane:

$$
\vec{\theta}=\mathcal{M} \vec{\beta}
$$

It is given by

$$
\mathcal{M}=\frac{1}{(1-\kappa)^{2}-\left(\gamma_{1}^{2}+\gamma_{2}^{2}\right)}\left(\begin{array}{cc}
1-\kappa+\gamma_{1} & \gamma_{2} \\
\gamma_{2} & 1-\kappa-\gamma_{1}
\end{array}\right)
$$

where κ, γ_{1}, and γ_{2} are constants determined by the lensing mass distribution and redshift. We'll see where they come from later; for now let's get a feel for what they do.

Open the website at: http://www.ies.co.jp/math/java/misc/don_trans/don_trans.html and scroll down to the applet.

Find the magnification matrix in the following cases, and see how the image changes.
A) $\kappa=1 / 6, \gamma_{1}=\gamma_{2}=0$
B) $\kappa=0, \gamma_{1}=0, \gamma_{2}=1 / 6$
C) $\kappa=0, \gamma_{1}=1 / 6, \gamma_{2}=0$

Try different combinations of the above, and try several of your own values for κ, γ_{1}, and γ_{2}. Get a feel for what they do the image.
D) We call γ_{1} and γ_{2} the "shear". (Sometimes we just use $\gamma=\sqrt{\gamma_{1}^{2}+\gamma_{2}^{2}}$.) Why do you think this is called the shear?
E) We call κ the "convergence". Any ideas why this name might have been given?
F) If given θ (what we actually observe), how would you find β ?
G) (Bonus, if time) Is the Magnification Matrix symmetric? What does this tell you about its eigenvectors? Writing $\gamma_{1} \equiv \gamma \cos 2 \phi$ and $\gamma_{2} \equiv \gamma \sin 2 \phi$, find the eigenvectors in terms of κ and γ. Find the determinant. What does this tell you about the transformation?

